Transforming growth factor-β-induced regulatory T cells referee inflammatory and autoimmune diseases
نویسندگان
چکیده
Naturally occurring CD4+CD25+ regulatory T cells mediate immune suppression to limit immunopathogenesis associated with chronic inflammation, persistent infections and autoimmune diseases. Their mode of suppression is contact-dependent, antigen-nonspecific and involves a nonredundant contribution from the cytokine transforming growth factor (TGF)-beta. Not only can TGF-beta mediate cell-cell suppression between the regulatory T cells and CD4+CD25- or CD8+ T cells, but new evidence also reveals its role in the conversion of CD4+CD25- T cells, together with TCR antigen stimulation, into the regulatory phenotype. Elemental to this conversion process is induction of expression of the forkhead transcription factor, Foxp3. This context-dependent coercion of naive CD4+ T cells into a powerful subset of regulatory cells provides a window into potential manipulation of these cells to orchestrate therapeutic intervention in diseases characterized by inadequate suppression, as well as a promising means of controlling pathologic situations in which excessive suppression dominates.
منابع مشابه
Human Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملModulation of autoimmune diseases by interleukin (IL)-17 producing regulatory T helper (Th17) cells
Following the discovery of interleukin (IL)-17 producing T helper (Th17) cells as a distinct lineage of CD4+ T helper cells it became clear that these cells play an important role in the host defense against extracellular fungal and bacterial pathogens and participate in the pathogenesis of multiple inflammatory and autoimmune disorders. Depending on the microenvironment, Th17 cells can alter t...
متن کاملMaternal Serum Levels of Transforming Growth Factor ß1 (TGF-ß1) in Normal and Preeclamptic Pregnancies
Background: Successful pregnancy in allopregnant women depends upon the control of graft rejection mechanisms. It has been suggested that some immunosuppressive cytokines contribute to successful pregnancy and transplantation. Transforming growth factor beta (TGF- β) exhibits potent immunoregulatory and anti-inflammatory properties which might prolong graft survival. Recent studies suggest a ...
متن کاملThe Role for Exosomal microRNAs in Disruption of Regulatory T Cell Homeostasis in Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, in which myelin and oligodendrocytes are the main targets recognized by inflammatory CD4+ T cells reactive to myelin peptides. Regulatory CD4+ T (Treg) cells normally keep homeostasis of the immune system by inhibiting detrimental effects of inflammatory T cells. However, Treg cells are reduced in patients with MS f...
متن کاملAltered Suppressor Function of Regulatory T Cells in Type 1 Diabetes
Background: Type 1 diabetes (T1D) is a T cell mediated autoimmune disease targeting the insulin-producing β cells within pancreatic islets. Autoimmune diseases may develop as a consequence of altered balance between regulatory (Tregs) and autoreactive T cells. Objectives: To evaluate Treg cells frequency and suppressive function in the peripheral blood of newly diagnosed T1D patients in compari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arthritis Research & Therapy
دوره 7 شماره
صفحات -
تاریخ انتشار 2005